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VIBRATIONALLY INDUCED ROTATIONAL AXIS SWITCHING: A NOVEL
MECHANISM FOR VIBRATIONAL MODE-COUPLING

H. Li, Gregory S. Ezra, and Laura A. Philips,
Department of Chemistry, Cornell University, Ithaca, NY 14853-1301

Abstract
High resolution IR spectra of small- to medium-sized molecules such as 2-
fluoroethanol (2FE) show that the effective density of coupled states is often
greater than that obtained by a direct count of vibrational states. A novel
mechanism for rotation-vibration interaction, vibrationally induced
rotational axis switching (VIRAS), is proposed as a possible explanation for
these discrepancies. VIRAS has its origin in centrifugal distortion, and is
physically distinct from Coriolis coupling. In the case of 2FE, we explicitly
treat the coupling of overall rotation with large-amplitude internal rotation
about the C-C bond. Assuming a uniform coupling of all dark vibration-
torsion states to the bright state, we predict a density of coupled states in good
agreement with that observed in the C-H stretching region at 2980 cm - 1 .

I. INTRODUCTION

Intramolecular vibrational energy redistribution (IVR) has been the

focus of intensive work, both theoretical and experimental, over the past

decade. 1-2 1 The idea of state-selective laser excitation to control chemical

reaction rates has been the motivation for a variety of experiments. One

would like to mode-selectively excite a molecule to obtain reaction rates or

product distributions that are functions of the particular mode excited, rather

than just the total energy and angular momentum. Rapid IVR is, however, a

major obstacle to such dreams. Factors influencing rates and mechanisms of

IVR are varied and extensive, and not as yet completely understood. As a

result, both experimentalists and theorists continue striving to understand

the phenomenon of IVR.

The consequences of IVR are manifest in both time-domain and

frequency-domain experiments. 1-14 Frequently, IVR is viewed as an explicitly
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time-dependent phenomenon, in which a non-stationary state is initially

prepared and evolves in time. Energy flows out of the initially excited mode,

which may be localized in one part of the molecule, to other modes and,

consequently, other parts of the molecule. The nonstationary state initially

prepared is often referred to as the "bright state", as it carries oscillator

strength for the spectroscopic transition of interest, and IVR results in the

flow of amplitude into the manifold of so-called "dark states" that are not

excited directly. It is of interest to understand what physical interactions

couple different modes, allowing energy to flow between them. In contrast to

time-domain measurements, experiments in the frequency domain excite

eigenstates of the molecule, which do not evolve with time. Splittings and

perturbations observable in high resolution spectra can yield detailed

information on the amount of mode-coupling in a given molecule. The

molecular eigenstates can be described as a superposition of zeroth-order

states that would be excited in the corresponding time-domain experiments.

Conversely, time-domain experiments may be analyzed in terms of the

preparation of superposition states of the molecular eigenstates. Once again,

we would like to predict which bright and dark states couple and what

physical mechanism causes such coupling.

Various mechanisms that have been invoked to explain vibrational

mode-coupling include anharmonic, centrifugal and Coriolis coupling. Each

coupling mechanism has been successfully employed to account for mode-

coupling in different circumstances.4-10 For example, anharmonic coupling is

independent of rotational angular momentum and therefore only directly

couples states with the same angular momentum quantum numbers. Both

centrifugal and Coriolis coupling terms are dependent on angular

momentum and will therefore depend on the rotational level of the
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molecule. For example, Kommandeur et al. analyze both time and frequency

resolved data and discuss in detail the application of these mechanisms to

mode-coupling in the mid-sized molecule pyrizine.10 From these as well as

other experiments 4-13, it is clear that rotational angular momentum can play

an important role in state mixing, and our understanding of the physical

mechanism of rotation dependent vibrational mode-coupling is far from

complete.

High resolution vibrational spectroscopy has been used to resolve

individual ro-vibrational eigenstates in molecules of intermediate size.4-8

Perturbations in the spectra of many molecules lead to the appearance of

clusters of peaks where one would expect to see a single ro-vibrational

transition. These clusters or clumps of peaks are direct evidence of state

coupling. Each additional peak in such a clump of peaks represents mixing of

the bright state with a dark state. Such spectral features have been observed

in a number of studies of mid-sized organic molecules in molecular beams.4-8

In some cases, there is a rotational dependence to the mode-coupling, 6-8

while in others the mode coupling is independent of rotation.5 ,6 In either

case, there is often a discrepancy between experiment and theory in the

number of coupled states.

One approach used to determine the mechanism of vibrational

coupling is to compare the theoretically predicted density of coupled states to

the density of coupled states measured experimentally. Using a zeroth-order

basis set of bright and dark states, the total number of vibrational states Tor'or

available to couple to the bright state is estimated from the calculated density

of dark states in the spectral region of interest. In the absence of rotation- C1

vibration coupling, this total density of vibrational states should give an

upper bound for the number of coupled states, since all dark states will not
-ity Codes
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necessarily couple to the bright state. Experimentally, the density of coupled

states is inferred from the number of transitions in a clump of peaks in the

spectrum. The spacing of the dark states as calculated from the spacing of the

transitions in the spectrum is a measure of the density of states actually

coupled to the bright state.5-8 In all of the experiments cited above the

experimental density of coupled states is larger than the calculated density of

states. This discrepancy can be explained if, for example, a single ro-

vibrational bright state is able to couple to more than one rotational state

associated with each of the vibrational dark states. Such coupling may occur

via the Coriolis mechanism 22,23. Coriolis coupling alone, however, does not

always account for the observed discrepancy between experiment and theory.

As a result, other variations and combinations of Coriolis coupling and

anharmonic coupling have been proposed.5 ,6,9,1 5 We analyze here an

alternate mechanism, physically distinct from Coriolis coupling, whereby a

single ro-vibrational bright state can couple to more than one ro-vibrational

dark state. The mechanism considered is a consequence of centrifugal

coupling, and has a straightforward physical interpretation in terms of

vibrationally induced changes in the orientation of the principal axes.

Recent work in our laboratory on the high resolution spectroscopy of 2-

fluoroethanol (2FE) has motivated our interest in coupling mechanisms7 ,8.

In the C-H stretching region of 2FE at 2980 cm-1, extensive mode-mode

coupling has been observed. The experimental density of coupled states is

determined to be 200-250 states/cm-1. The density of vibrational states in the

neighborhood of 2980 cm-1 estimated on the basis of a simple rigid

rotor/harmonic oscillator/hindered rotor model is between 35 and 58

states/cm- 1, depending on the potential functions used in the calculation. In

this calculation the fundamental vibrational frequencies for all but the
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torsional modes, were used from experimental measurements25 , and a 2%

anhamonicity was assumed. The torsional modes were treated as hindered

rotors.26 An additional coupling mechanism is apparently required to

account for the discrepancy between experiment and calculation.

One possible coupling mechanism that will lead to rovibrational

mixing is standard Coriolis coupling. The Coriolis term in the Watson

Hamiltonian 22 directly couples zeroth-order vibrational states differing bt one

quantum in each of two modes. As dark states in 2FE at approximately 3000

cm -1 contain as many as 80 quanta, it is necessary to invoke very high order

combinations of anharmonic and Coriolis perturbations to explain the

observed level density. The observed J-dependence of the density of coupled

states is, however, relatively weak (see Fig. 7), suggesting that Coriolis

coupling is significant only to low order, if at all. We are therefore led to

examine additional rotation-vibration coupling mechanisms to explain the

perturbations observed in the high resolution infrared spectrum of 2FE. In

this paper, we analyze a mechanism for rovibrational mixing based on the

phenomenon of vibrationally induced rotational axis switching (VIRAS).

VIRAS is most pronounced for dark states containing torsional modes, where

large-amplitude internal rotation occurs.

A summary of the paper follows: in Section II we introduce the key

physical idea of VIRAS in the context of the conventional description of

rotation-vibration interaction in semi-rigid molecules. The theory is then

developed in more detail for a molecular model in which one large-

amplitude internal motion is treated explicitly. In Section HI we apply the

theory to 2FE. The VIRAS mechanism is able to provide a very reasonable

estimate for the density of states coupled to a given bright state for the

example of 2FE. Conclusions are given in Section IV.
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II. THEORETICAL APPROACHES TO ROTATION-VIBRATION COUPLING

In this Section we first introduce the essential physical idea of

vibrationally induced rotational axis switching in the simple context of the

usual rotation-vibration Hamiltonian for semi-rigid molecules. To apply the

theory to the particular case of 2FE, however, it is necessary to consider

explicitly large-amplitude torsional motion.

A. Bright and Dark States

The standard spectroscopic approach to the problem of vibration-

rotation coupling in semi-rigid molecules involves calculation of the

eigenvalues and eigenvectors of the Watson Hamiltonian for small

amplitude motion.22 The zeroth-order solution to the vibration-rotation

problem is based on the harmonic-oscillator/rigid rotor separation of

vibration and rotation. The vibrational modes are treated as a set of

independent harmonic oscillators and the rotational states are taken to be

eigenstates of a rigid asymmetric top. The corresponding zeroth-order

Hamiltonian has the usual form for nonlinear semi-rigid molecules:

0 2 2 2 2

H ~ Pk+U(Q)+AJA+BJB+CJc [Eq. 11

where it is assumed that the Eckart frame is aligned with the principal axes of

the inertia tensor at the equilibrium configuration (zero vibrational

displacement). Pk is the momentum conjugate to the kth normal vibration

and U(Q) is the potential energy for

(3N-6) independent harmonic oscillators. Eigenfunctions of HO are products

I {nj> I J,X> of the 3N-6 harmonic oscillator wavefunctions I (nj}>, where (nj}

is a set of vibrational quantum numbers for the 3N-6 modes of the molecule,

and asymmetric rotor wavefunctions I JX>, where X is a book-keeping label
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that serves to distinguish between the 2J+1 states of the same total rotational

angular momentum J. These zeroth-order wavefunctions are often taken to

describe the bright state and dark states in time-resolved experiments at low

levels of excitation 9 . Transition probabilities may be derived based on

properties of these states.

Coupling terms are obtained by subtracting HO from the full Watson

Hamiltonian. Anharmonic coupling terms depend only on vibrational

variables, while Coriolis and centrifugal coupling terms depend on both

vibrational and rotational variables. Due to the presence of these coupling

terms, the functions I (nj)> I J,X> are no longer eigenstates of the full

rovibrational Hamiltonian. Nevertheless, the zeroth-order states I (nj)> I J,.>

serve as a complete basis set in which to expand the true rotation-vibration

eigenstates, I ,J>:

I,J>= X C(n.Jtlnj}>IJ,.'>

[Eq. 2]

A "bright state" is a particular zeroth-order state I (nj}> I J,.> that carries

oscillator strength for a given spectroscopic transition in the harmonic-

oscillator/rigid-rotor approximation. If the bright state contributes

significantly to several molecular eigenstates I T,J>, one will see more

transitions in the experimental spectrum than predicted by a calculation based

on the rigid rotor, harmonic oscillator model. The bright state/dark state

picture becomes less useful when the molecular eigenstates have significant

admixtures of several bright states, producing a spectrum that is unassignable

in terms of the zeroth-order quantum numbers.
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Different coupling mechanisms will mix different types of zeroth-order

states in I ',J>. For example, anharmonic coupling terms, which involve

only vibrational variables, will only mix directly different (nj)'s, while the

rotational part I J,> remains unaffected.

Both centrifugal and Coriolis coupling also mix different I J,X.>'s, but total J

must, of course, be conserved. Coriolis coupling or centrifugal coupling plus

anharmonic coupling can mix, in principle, all of the rotational states

associated with any two vibrational states.

The physical origin of Coriolis coupling is the interaction of molecular

rotation with the vibrational angular momentum induced by the

simultaneous excitation of a pair of vibrational modes. For example, in the

case of a linear triatomic molecule, Coriolis interactions can couple the

asymmetric stretch and the bend. As the vibrating molecule rotates, there is a

Coriolis force on each nucleus proportional to the vector product of its

momentum with the angular velocity vector. For the asymmetric stretch

mode, the combination of forces on the individual nuclei results in

excitation of a component of bending motion. The effects of Coriolis

coupling are most pronounced when the two modes have nearly equal

frequencies.

Centrifugal coupling arises from the vibrational coordinate

dependence of the molecular moments of inertia. In the VIRAS mechanism

we focus attention on a rotation-vibration coupling phenomenon that is a

consequence of centrifugal interaction, and so is physically distinct from

Coriolis coupling. This VIRAS phenomenon is analogous to axis switching

in electronic transitions25.
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B. Vibrationally Induced Rotational Axis Switching in Semi-rigid Molecules

To introduce the VIRAS phenomenon for semi-rigid molecules,

consider an adiabatic separation of (3N-6) "fast" vibrations from "slow"

rotation. Each vibrational state then has an effective rotational Hamiltonian

obtained by averaging over the vibrational coordinates, and anharmonic

couplings will couple different zeroth-order vibrational states. The bright

vibrational state is defined as the product of an appropriate excited vibrational

state with an eigenstate of the associated rotational Hamiltonian. In general,

rotational constants and, most importantly, the orientation of principal

inertial axes (with respect to the Eckart frame) will be different for different

vibrational states. The change in orientation of the inertial axes with

vibrational state is called vibrationally induced rotational axis switching

(VIRAS).

Suppose for the moment that the molecular Hamiltonian contains

only anharmonic perturbations, which serve to mix vibrational states. The

dependence of rotational constants and principal axis orientation on

vibrational state then implies that the bright state is coupled to a dark state

that has principal axes rotated with respect to the principal axes of the bright

state. Since the asymmetric top quantum numbers refer to a specific

orientation of the principal axes, if the axes are rotated, the asymmetric top

quantum numbers are no longer conserved. The result is that a given

rotational bright state, with given angular momentum quantum numbers,

can in fact couple via anharmonic perturbation to several rotational states

associated with a particular dark vibrational state. That is, VIRAS results in a

breakdown of rotational "selection rules", just as in the analogous

pbenomenon for electronic transitions.
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The amount of rotational mixing is of course a function of vibrational

state. Vibrational modes which induce the largest changes in both rotational

constants and orientation of the principal axes are likely to have the most

dramatic rotational state mixing via VIRAS. In particular, vibrational modes

involving large-amplitude low frequency torsional motion will cause

considerable changes in molecular geometry and concomitant changes in

rotational constants and principal axis orientation. For example, we expect

the torsional modes in 2FE to have the largest VIRAS effect (see next Section).

As an example, shown in Figure 1 is a diagrammatic representation of the

reorientation of the principal axes for two different vibrational dark states of

2FE, one containing no torsion and the other with sig nificant amounts of

torsion.

The above qualitative discussion has presented a physical description

of the VIRAS effect. Within the discussion, we have implicitly assumed the

use of the Watson rotation-vibration Hamiltonian for a semi-rigid molecule,

based upon the Eckart frame. Before presenting the formal treatment of the

VIRAS effect for 2FE another aspect of angular momentum coupling is

considered. The internal angular momentum generated by the large-

amplitude torsional motion of the hindered rotor can couple to the overall

rotation of the molecule. In order to develop a quantitative theory for 2FE, it

is necessary to go beyond the Watson Hamiltonian and treat explicitly the

coupling of large-amplitude torsional motion with overall rotation.

C. Coupling of Internal Rotation and Overall Rotation in 2-Fluoroethanol

In this subsection, we derive a Hamiltonian describing interaction of

overall rotation with a single large-amplitude internal rotation

coordinate. 2 6 ,2 7 The model Hamiltonian is then applied to describe the
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interaction of rotation with internal rotation about the C-C bond in 2FE.

Internal rotation about the C-O bond involves solely the motion of a

hydrogen atom. The perturbation caused by this internal rotation is small in

terms of the VIRAS effect and is assumed to be only weakly coupled to the

overall rotation. Therefore, the C-O torsion is not considered explicitly, but is

treated as an uncoupled hindered rotor. All remaining 3N-8 internal

coordinates are treated as high frequency small amplitude vibrational

coordinates. Although we shall not need to specify the precise choice of

embedding for the molecule-fixed frame, the Eckart-Sayvetz frame 2 2 is a

natural choice.

The coordinate system used is shown in Fig. 2. Note in particular that

the internal rotor angle X is half the FCCO torsion angle, so that internal

rotation generates only a small amount of angular momentum about the C-C

axis. In the treatment of the FCCO torsion, the OH group is a single point

mass.

Following standard procedures 2 7 , the quantum mechanical rotation-

torsion Hamiltonian for the model of Fig. 2 is found to be:

H=1 JiJ + GP 2 + ,nn + V(X) - 2xjtJ
[Eq. 3]

-1 -~t =(I -B B)

D= dra

a dX

-1K=B'P1

D X1



D

Here, V(X) is the torsional potential, ma and ra are mass and position vectors

of a-th atom. I is the inertia tensor, which varies with torsional angle X.

H can be partitioned into three parts, corresponding to overall

rotation, internal rotation and the interaction between internal rotation and

overall rotation. The first term on the right hand side of Lq. 3 represents

overall rotation, the second and fourth terms represent internal rotation and

the third and fifth terms are interaction terms. Note that both the ji-tensor

and the G coefficient depend on X. The above Hamiltonian can be expanded

and simplified to the form:

2+ 2
H=gxjx~ yYY + ' J z  [Eq 41

+Atyz(JyJz+JzJy)+HTr

1
"-(RIxJ x+RIyJy+RzJ z)P
2

+P(RIJx+RyJy+RI J )]

2 x y z

x D

2 x y z

RI 2<lxzB +LyzB +,B)

In this form of the Hamiltonian we have made one further approximation:

the X dependence of G in the internal rotation part of the Hamiltonian is

ignored. This modification is expected to have only a minor effect on the
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results and greatly simplifies the calculation. The eigenfunctions of HT are

denoted I m>, m=0,1,.... For a given J, rotation-torsion eigenfunctions are

expanded as sums of products of symmetric rotor wavefunctions with

torsional wave functions I m> :

I->-:1 C5J,K>lm>
K m [Eq. 5]

The rotation-torsion component of the bright state associated with the

vibrational transition of interest is taken to be a product of a rotational

eigenfunction for an asymmetric top with appropriate rotational constants

and the torsional ground state function I m=0>. The bright state can also be

expanded in the same product basis set used above:

I >= D J,K>lm--0>
K [Eq. 61

The bright and dark states are now written as products of rotation-torsion

states, expanded as above, with vibrational states for the 3N-7 remaining

degrees of freedom. To estimate the number of dark states coupled to a given

bright state, it is necessary to evaluate matrix elements of the form:

<41< {nJ} Iadvc-8=l>jO> [Eq. 7]

where HIv' is the term in the Hamiltonian representing the effect (direct and

via higher order perturbations) of residual anharmonic interactions between

the torsion-vibrational modes. The set of dark states contain vibrational

states of very different character. At the energy of interest, a given dark state

may correspond to excitation of only a few quanta of torsion, or as many as 70

or 80 quanta. The precise nature of the anharmonic perturbations which
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couple states with such disparate numbers of quanta is unclear. From

experiment, it is apparent that the density of coupled states far exceeds the

number of available vibrational states. We therefore make the drastic

assumption that all available dark states in the vicinity of the bright state will

couple, via an unknown anharmonic perturbation, with the bright state. We

further assume that the matrix elements of the anharmonic perturbation

connecting the bright state I m=O> I (ni)> with any dark state I m> I (nf}> are

equal. Using this approximation, the relative magnitudes of the coupling

matrix elements become:

<Vj(n)IHIv~tl>10>,DlK C m <mIHlm=O>

K [Eq. 81

-, D Ky
K m

where (Ck,m) are the expansion coefficients of the torsional-rotational

eigenstates in the I JK> I m> basis, and Dk are expansion coefficients of the

bright state in the same I JK> basis. Eq. 8 therefore expresses the magnitude of

the coupling matrix element as a sum of overlaps of rotational components.

When the principal axes of a dark state do not coincide with those of

the bright state, the bright state can in principle couple to the entire manifold

of rotational states associated with the dark state as long as J is conserved. In

practice, if the coupling matrix element is sufficiently small, a transition to

that state would not be observed experimentally. Based on the experimental

signal-to-noise ratio, we set the threshold overlap of dark states with bright

states to be 1% of the maximum overlap, and further assume that any dark

state having an overlap with the bright state above the threshold is detectable

experimentally.
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This procedure is demonstrated in detail for the case of 2FE in the next

Section.

III. VIRAS AND 2-FLUOROETHANOL

Using the procedure outlined in the previous Section, we now

calculate the density of states available for coupling in 2FE.

There are 21 normal modes in 2FE, of which two are torsional modes,

corresponding to rotation about the C-C bond and the C-O bond, respectively.

The fundamental frequencies of these modes have been measured and

assigned experimentally. 25 In order to make a crude estimate of the

vibrational density of states, we treat the 2 torsional modes separately as

hindered rotors, while the other 19 modes are treated as uncoupled

anharmonic oscillators. 6,7 A 2% anharmonicity is assumed for all modes.

The potential functions for the two torsional modes are shown in Figure 3.

The C-O torsional potential is a calculated function from the work of Wiberg

and Murcko.28 The C-C torsional potential was generated to correspond to

experimentally determined values of the barrier heights and relative well

depths. Direct counting of the vibrational states including a 2%

anharmonicity then gives an average calculated density of states of 56

states/cm-1 at 2980 cm- 1. With anharmonic coupling alone, the maximum

number of available states in this region is therefore 56/cm -1 . Both Coriolis

coupling and the VIRAS mechanism can result in rovibrational mixing,

thereby increasing the number of states available for coupling in this spectral

region. We now calculate the number of coupled states using the VIRAS

model of the previous Section.

A normal mode analysis of 2FE was performed using MOPAC3 0. The

input geometry of 2FE was determined from experimental data.25 MOPAC
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excuted a MNDO 31 calculation on the input geometry until a stable geometry

was found; only minor modifications to the input geometry resulted. The

MNDO calculation also produced force constants, vibrational frequencies,

normal modes, and the transformation matrix from cartesian coordinates to

normal coordinates. The calculated frequencies from the normal mode

analysis are in good agreement with experiment for the high frequency

modes, but some discrepancies are found for the low frequency modes (See

Table I). The normalized normal coordinate eigenvectors were used to

calculate classical RMS displacements of each atom at a vibrational energy

equal to the zero-point energy. Assuming an adiabatic separation of vibration

and rotation, the geometry change upon excitation of the 19 small-amplitude

harmonic modes is not sufficient to significantly rotate the principal axes in

the molecule, so that VIRAS will not be important for these modes.

Excitation of the torsional modes, however, results in much larger average

displacements of the atoms in the molecule and possibly concomitant

rotation of the principal axes. Torsion about the C-O bond has only a small

effect on the inertial parameters of the molecule. The mass of the hydrogen is

so small that changes in the inertia tensor as a function of C-O torsion angle

are negligible. When calculating molecular geometries we therefore fix the

torsional angle of the OH group along the C-O bond at 55.50, based on the

geometry from microwave experiments.25

Since there are such small changes in geometry upon excitation of

vibrations other than the torsional modes, changes in inertial parameters

due to excitation of these other modes are henceforth neglected. Excitation of

the large-amplitude C-C torsion mode leads to the largest VIRAS effect, and

we now consider the interaction of this mode with overall rotation.
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The Hamiltonian describing interaction of rotation with large-

amplitude C-C torsion was given in the previous Section. The torsional basis

used consists of eigenstates of the torsional Hamiltonian HT. The torsional

potential for the C-C torsion was modelled as a periodic sum of cosines:

n [Eq. 9]

where the Vn's are derived from experimental values for the barrier heights

and relative well depths (See Figure 3).28,29 The C-C torsional potential is

shown in Figure 4, together with the energy levels determined for this

potential. Torsional eigenfunctions were expanded as a sum of cosine and

sine functions, and the expansion coefficients calculated based on the

algorithm of Lewis et al.26 The size of the expansion basis was increased until

convergence within 0.2 cm-1 was attained. A representative selection of

wavefunctions is shown in Figure 5. Note that VC-C is a periodic function

with two identical minima at the two gauche forms and a single local

minimum at the Tt' form. The low energy torsional levels are nearly doubly

degenerate with maximum probability density at the gauche forms. With

increasing quantum number, new states appear with probability density at the

trans form at approximately v=20. At higher quantum levels, the

wavefunction begins to delocalize over all angular space (v>48).

A total of 120 torsional states are used in the expansion of the rotation-

torsion eigenstates of Hamiltonian Eq. 4 From the coordinate system of

Figure 2, it can be seen that the transformation X -> X + 2x results in an

overall rotation of the molecule by x about the C-C axis. The rotation-torsion

basis functions must therefore satisfy the boundary condition:
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[Eq. 101

where 0 is an Euler angle describing overall rotation about the C-C bond.

Note that the full range of X is 0-447c. Requiring the rotation-torsion

eigenfunction to be single valued then implies that for an odd number of

torsional quanta the K quantum number be odd, and for an even number of

torsional quanta K must be even. For given J, a basis of 240 torsional states

was used, half of which have the right symmetry to match even K states

I J,K>, the other half odd K. The set of basis functions consisting of the

product of the I J,K> rotational states and the I m> torsional states is used to

construct the rotation-torsion Hamiltonian matrix.

The Hamiltonian matrix is block diagonal in J, and each J block is

diagonalized independently (for example, the J=5 block is 1320 x1320) to give

rotation-torsion eigenvalues and eigenstates. The rotation-torsion states are

combined with various other vibrations to form states of energy nearly

resonant with the bright state. Such a combination state is shown

schematically in Figure 6. The rotation-torsion component of the total

eigenvectors can be projected onto the rotational bright states using Eq. 8. As

discussed in the previous Section, to compare theory with experiment it is

necessary to set a cutoff value for the overlap Eq. 8, below which the

associated transition is deemed unobservable. This threshold is set at 1% of

the maximum overlap. It should be emphasized that the 1% value is

determined by the dynamic range of the experiment and is not an arbitrarily

adjustable parameter.

The results of our quantum mechanical treatment of VIRAS in 2FE are

shown in Figure 7 and presented in Table II. Many more rotational states

associated with a single vibrational dark state are available to couple to a
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given rotational level in the bright state than would be predicted from

anharmonic coupling alone. For example, for J=4, the effective density of

coupled states is increased from 56 states/cm-1 with anharmonic coupling

alone to 276 states/cm-l, as compared to the experimental measured value of

278 states/cm-1. For the available experimental results, where J=0-5, our

calculations are in very good agreement with the experimental data and well

within the experimental uncertainties. The uncertainties in the experimental

data are intrinsic to the physical quantity being measured, and therefore are

not limited by the noise in the data.7,8 The data suggests that there is mode-

selectivity in the vibrational coupling that is not accounted for in the

calculation. Mode-selective coupling results in differences in the magnitude

of the coupling matrix elements for different vibrational dark states, and

therefore different effective densities of states. The calculations presented

here do not account for these differences because uniform coupling for

different vibrational states is assumed.

The agreement between our model and the experiment has been

achieved without any adjustable parameters. The precise nature of the dark

states in the vicinity of a given bright state, however, is expected to be a

sensitive function of the details of the torsional potential function. Although

our potential function was constructed to agree with experimentally

measured parameters, the form of the potential chosen is necessarily an

approximation. To evaluate the effect of our choice of potential on the

VIRAS predictions, we changed the barrier heights and relative well depths

by 10% and recalculated the predicted density of coupled states. The results of

this calculation are plotted as a function of J in Figure 8. These changes in the

potential surface had only a small effect on the theoretical predictions, and

our results remained in good agreement with the experimental data.
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IV. CONCLUSION

The phenomenon of vibrationally induced rotational axis switching

(VIRAS) has been proposed as a mechanism for explaining enhanced

densities of coupled states in high-resolution spectra. VIRAS is a direct

consequence of centrifugal distortion, and is best understood in terms of an

adiabatic separation of vibrational and rotational motion. Each vibrational

state has an effective rotational Hamiltonian obtained by averaging over the

vibrational coordinates. The rotational constants and orientation of the

principal axes will in general be different for each vibrational state, so that

rotational eigenstates associated with different vibrational states are no longer

orthonormal. The number of dark states to which a given bright state can be

coupled by an anharmonic coupling term in the Hamiltonian is then

increased due to nonzero "rotational Franck-Condon factors".

Application of the theory to 2FE showed that the C-C torsional mode

exhibited the most pronounced VIRAS effect. An exact torsional-rotational

Hamiltonian for 2FE was diagonalized to obtain rotation-torsion eigenstates

for 2FE. Zeroth-order states were taken to be products of torsion-rotation

states with vibrational states for the 3N-7 remaining modes. Assuming that

anharmonic terms in the Hamiltonian couple every dark torsion-vibration

state equally strongly to the bright torsion-vibration state, the coupling matrix

element can be expressed as a sum of overlaps of rotational states. Using a

reasonable threshold intensity for detection, we calculate the density of

rovibrational states available for coupling. The theoretical predictions are

found to be in good agreement with experiment.
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Figure Captions

Figure 1: Two examples of the relative orientation of the principal axes of the

bright state and a particular dark state are shown. In part a, the dark state

contains no torsion and there is little difference in the axes or the rotational

constants for the two vibrational states. The dark state is composed of 1

quanta of V6 and 1 quanta of V10 . In contrast, in part b, the dark state

contains torsion and there is substantial reorientation of the principal axes

and concomitant change in the rotational constants. There are 74 quanta of

torsion in this dark state, well as 1 quanta of V16 and 1 quanta of V19 "

Figure 2: The axis system used to define the geometry of 2-fluoroethanol is

presented. The angle x is half of the FCCO dihedral angle.

Figure 3: The torsional potential functions for the C-C torsion and the C-O

torsion are shown above. The C-O potential function was calculated at the

MP3/6-311++G** level by Wiberg and Murcko29 For the C-O torsion, the

geometry about the C-C bond was held at the trans conformation. The C-C

torsional potential was generated by a sum of cosines to correspond to

experimentally determined values of the barrier heights and relative well

depths.

Figure 4: The energy levels for the C-C torsional potential are shown for

energy levels up to v=50. There are three kinds of energy levels. There are

symmetric and antisymmetric levels that are generated from the two identical
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gauche potential wells, and levels corresponding to wavefunctions that have

their maximum amplitude in the trans potential well.

Figure 5: The corresponding wavefunctions for a representative selection of

the energy levels from Figure 4 are shown.

Figure 6: Shown schematically is an example of the relative energies of the

bright state and a dark state containing I quanta of V6 and 1 quanta of V10,

and the manifold of the states Vi determined from the diagonalization of the

rotation-torsion Hamiltonian given in Equation 4 and described in the text.

Figure 7: Shown above is a plot of the density of coupled states versus the

quantum number J for the experimental data from the spectrum of 2FE and

two different coupling models. Squares: experimental data (dotted lines

represent the experimental uncertainties); Triangles: the prediction of the

VIRAS coupling model.

Figure 8: The plot shown is identical to the plot in Figure 7, except that the

relative well depths and potential barriers for the C-C torsion potential were

decreased by 10%. Note that with this substantial change in the potential,

there remains good agreement between the VIRAS predictions and the

experimental results.
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Tables

Table 1: The vibrational modes in 2FE. The calculated frequencies are from

the normal mode calculations. The assignments are from the experiments of

R. Azrak and K.S. Buckton2 5 .

Table 2: The density of states as predicted by the VIRAS coupling model, as a

function of the rotational quantum number, J.
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U Observed(cm- 1) Calculated(cm-1) Assignment

1 3626 3998 -uOH
2 2980 3256 uaCH
3 2961 3248 uaCH
4 2926 3197 usCH
5 2896 3185 usCH
6 1460 1597 8sCH
7 1458 1544 oCH
8 1400 1513 oa1i
9 1373 1452 85CH

10 1348 1430 tCH
11 1252 1425 tCH
12 1203 1400 slHOC
13 1103 1315 UaOCC
14 1080 1241 to0cX
15 1026 1124 uT
16 885 1010 iCHsCCF
17 850 948 rCH
18 513 581 SOCC,CCF in phase
19 342 345 8OCCCCF,out phase
20 292 289 IO(l
21 161 122



J Density of States (per wave number)

0 51.70

1 91.40

2 142.9

3 198.4

4 276.1

5 310.6
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